Lab 11 - Interactive Visualization
Learning Goals
- Read in and process the COVID dataset from the New York Times GitHub repository
- Create interactive graphs of different types using
plot_ly()
andggplotly()
functions - Customize the hoverinfo and other plot features
- Create a Choropleth map using
plot_geo()
Lab Description
We will work with COVID data downloaded from the New York Times. The dataset consists of COVID-19 cases and deaths in each US state during the course of the COVID epidemic.
The objective of this lab is to explore relationships between cases, deaths, and population sizes of US states, and plot data to demonstrate this
Steps
I. Reading and processing the New York Times (NYT) state-level COVID-19 data
0. Install and load libraries
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.0 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.1 ✔ tibble 3.2.0
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::between() masks data.table::between()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::first() masks data.table::first()
## ✖ lubridate::hour() masks data.table::hour()
## ✖ lubridate::isoweek() masks data.table::isoweek()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::last() masks data.table::last()
## ✖ lubridate::mday() masks data.table::mday()
## ✖ lubridate::minute() masks data.table::minute()
## ✖ lubridate::month() masks data.table::month()
## ✖ lubridate::quarter() masks data.table::quarter()
## ✖ lubridate::second() masks data.table::second()
## ✖ purrr::transpose() masks data.table::transpose()
## ✖ lubridate::wday() masks data.table::wday()
## ✖ lubridate::week() masks data.table::week()
## ✖ lubridate::yday() masks data.table::yday()
## ✖ lubridate::year() masks data.table::year()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
## Loading required package: htmlwidgets
1. Read in the data
- Read in the COVID data with data.table:fread() from the NYT GitHub repository: “https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv”
- Read in the state population data with data.table:fread() from the repository: “https://raw.githubusercontent.com/COVID19Tracking/associated-data/master/us_census_data/us_census_2018_population_estimates_states.csv””
- Merge datasets
cv_states_readin <-
data.table::fread("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv")
state_pops <- data.table::fread("https://raw.githubusercontent.com/COVID19Tracking/associated-data/master/us_census_data/us_census_2018_population_estimates_states.csv")
state_pops$abb <- state_pops$state
state_pops$state <- state_pops$state_name
state_pops$state_name <- NULL
cv_states <- merge(cv_states_readin, state_pops, by = "state")
2. Look at the data
- Inspect the dimensions,
head
, andtail
of the data - Inspect the structure of each variables. Are they in the correct format?
3. Format the data
- Make date into a date variable
- Make state into a factor variable
- Order the data first by state, second by date
- Confirm the variables are now correctly formatted
- Inspect the range values for each variable. What is the date range? The range of cases and deaths?
cv_states$date <- as.Date(cv_states$date, format = "%Y-%m-%d")
state_list <- unique(cv_states$state)
cv_states$state <- factor(cv_states$state, levels = state_list)
abb_list <- unique(cv_states$abb)
cv_states$abb <- factor(cv_states$abb, levels = abb_list)
# sort by state then date
cv_states <- cv_states[order(cv_states$state, cv_states$date), ]
4. Add new_cases
and new_deaths
and
correct outliers
- Add variables for new cases,
new_cases
, and new deaths,new_deaths
:- Hint: You can set
new_cases
equal to the difference between cases on date i and date i-1, starting on date i=2
- Hint: You can set
cv_states <- cv_states |>
group_by(state) |>
mutate(
new_cases = c(-999999, diff(cases)),
new_deaths = c(-999999, diff(deaths))
) |>
mutate(
new_cases = ifelse(new_cases == -999999, cases, new_cases),
new_deaths = ifelse(new_deaths == -999999, deaths, new_deaths)
)
glimpse(cv_states)
## Rows: 58,094
## Columns: 11
## Groups: state [52]
## $ state <fct> Alabama, Alabama, Alabama, Alabama, Alabama, Alabama, Alab…
## $ date <date> 2020-03-13, 2020-03-14, 2020-03-15, 2020-03-16, 2020-03-1…
## $ fips <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ cases <int> 6, 12, 23, 29, 39, 51, 78, 106, 131, 157, 196, 242, 386, 5…
## $ deaths <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 4, 4, 5, 11, 14,…
## $ geo_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ population <int> 4887871, 4887871, 4887871, 4887871, 4887871, 4887871, 4887…
## $ pop_density <dbl> 96.50939, 96.50939, 96.50939, 96.50939, 96.50939, 96.50939…
## $ abb <fct> AL, AL, AL, AL, AL, AL, AL, AL, AL, AL, AL, AL, AL, AL, AL…
## $ new_cases <dbl> 6, 6, 11, 6, 10, 12, 27, 28, 25, 26, 39, 46, 144, 152, 101…
## $ new_deaths <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 6, 3, 1…
- Filter to dates on or after October 1, 2022
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## "2022-10-01" "2022-11-13" "2022-12-26" "2022-12-26" "2023-02-08" "2023-03-23"
- Use
ggplotly
for EDA: See if there are outliers or values that don’t make sense fornew_cases
andnew_deaths
. Which states and which dates have strange values?
plt_eda_new_cases <- ggplot(
cv_states,
aes(x = date, y = new_cases, colour = state)
) +
geom_line() +
theme_minimal()
ggplotly(plt_eda_new_cases)
plt_eda_new_deaths <- ggplot(
cv_states,
aes(x = date, y = new_deaths, colour = state)
) +
geom_line() +
theme_minimal()
ggplotly(plt_eda_new_deaths)
- Correct outliers: Set negative values for
new_cases
ornew_deaths
to 0
cv_states <- cv_states |>
mutate(
new_cases = ifelse(new_cases > 0, new_cases, 0),
new_deaths = ifelse(new_deaths < 0, 0, new_deaths)
)
cv_states |>
select(new_cases, new_deaths) |>
summary()
## state new_cases new_deaths
## Alabama : 174 Min. : 0.0 Min. : 0.000
## Alaska : 174 1st Qu.: 0.0 1st Qu.: 0.000
## Arizona : 174 Median : 0.0 Median : 0.000
## Arkansas : 174 Mean : 864.3 Mean : 8.926
## California: 174 3rd Qu.: 423.0 3rd Qu.: 3.000
## Colorado : 174 Max. :87445.0 Max. :3732.000
## (Other) :8004
- Inspect data again interactively
plt_eda_new_cases_2 <- ggplot(
cv_states,
aes(x = date, y = new_cases, colour = state)
) +
geom_line() +
theme_minimal()
ggplotly(plt_eda_new_cases_2)
plt_eda_new_deaths_2 <- ggplot(
cv_states,
aes(x = date, y = new_deaths, colour = state)
) +
geom_line() +
theme_minimal()
ggplotly(plt_eda_new_deaths_2)
The new death count for New York on November 11, 2022 seem out of place. We can check the counts surrounding the date for New York State. In this case, it doesn’t reveal any obvious error and we will keep the record as is.
cv_states |>
dplyr::filter(
state == "New York",
between(date, as.Date("2022-11-09"), as.Date("2022-11-12"))
) |>
select(date, cases, new_cases, deaths, new_deaths)
## # A tibble: 4 × 6
## # Groups: state [1]
## state date cases new_cases deaths new_deaths
## <fct> <date> <int> <dbl> <int> <dbl>
## 1 New York 2022-11-09 6280581 6256 72667 48
## 2 New York 2022-11-10 6286317 5736 72674 7
## 3 New York 2022-11-11 6288122 1805 76406 3732
## 4 New York 2022-11-12 6289735 1613 76406 0
5. Add additional variables
- Add population-normalized (by 100,000) variables for each variable
type (rounded to 1 decimal place). Make sure the variables you calculate
are in the correct format (
numeric
). You can use the following variable names:per100k
= cases per 100,000 populationnewper100k
= new cases per 100,000deathsper100k
= deaths per 100,000newdeathsper100k
= new deaths per 100,000
cv_states <- cv_states |>
mutate(
per100k = round(cases / population * 1e5, digits = 1),
newper100k = round(new_cases / population * 1e5, digits = 1),
deathsper100k = round(deaths / population * 1e5, 1),
newdeathsper100k = round(new_deaths / population * 1e5, 1)
)
cv_states |>
select(per100k, newper100k, deathsper100k, newdeathsper100k) |>
summary()
## state per100k newper100k deathsper100k
## Alabama : 174 Min. :20691 Min. : 0.00 Min. :114.8
## Alaska : 174 1st Qu.:27805 1st Qu.: 0.00 1st Qu.:256.0
## Arizona : 174 Median :30724 Median : 0.00 Median :337.6
## Arkansas : 174 Mean :30519 Mean : 13.17 Mean :320.5
## California: 174 3rd Qu.:33170 3rd Qu.: 11.82 3rd Qu.:391.7
## Colorado : 174 Max. :43676 Max. :545.90 Max. :462.8
## (Other) :8004
## newdeathsper100k
## Min. : 0.0000
## 1st Qu.: 0.0000
## Median : 0.0000
## Mean : 0.1388
## 3rd Qu.: 0.1000
## Max. :19.4000
##
- Add a “naive CFR” (case fatality rate) variable representing
deaths / cases
on each date for each state
- Create a dataframe representing values on the most recent date,
cv_states_today
II. Scatterplots
6. Explore scatterplots using plot_ly()
- Create a scatterplot using
plot_ly()
representingpop_density
vs. various variables (e.g.cases
,per100k
,deaths
,deathsper100k
) for each state on most recent date (cv_states_today
)- Color points by state and size points by state population
- Use hover to identify any outliers.
plot_ly(
cv_states_today,
x = ~ pop_density,
y = ~ per100k,
color = ~ state,
size = ~ population,
type = "scatter",
sizes = c(5, 1000),
marker = list(sizemode = "area", opacity = .8)
)
- Remove those outliers and replot.
cv_states_today |>
filter(
! state %in% c(
# "Alaska",
# "Rhode Island",
"District of Columbia"
)
) |>
plot_ly(
x = ~ pop_density,
y = ~ per100k,
color = ~ state,
size = ~ population,
type = "scatter",
sizes = c(5, 1000),
marker = list(sizemode = "area", opacity = .8)
)
(Alternatively, use log transfromation)
plot_ly(
cv_states_today,
x = ~ log(pop_density),
y = ~ per100k,
color = ~ state,
size = ~ deathsper100k,
type = "scatter",
sizes = c(5, 500),
marker = list(sizemode = "area", opacity = .8)
)
- Choose one plot. For this plot:
- Add hoverinfo specifying the state name, cases per 100k, and deaths per 100k, similarly to how we did this in the lecture notes
- Add layout information to title the chart and the axes
- Enable
hovermode = "compare"
hovermode = "x"
plot_ly(
cv_states_today,
x = ~ log(pop_density),
y = ~ per100k,
color = ~ state,
size = ~ deathsper100k,
type = "scatter",
sizes = c(5, 500),
marker = list(sizemode = "area", opacity = .8),
hoverinfo = "text",
text = ~ paste0(
state, "\n",
" Cases per 100k: ", per100k, "\n",
" Deaths per 100k: ", deathsper100k, "\n",
" Population density: ", round(pop_density, 1),
" per sq miles"
)
) |>
layout(hovermode = "x") # compares states with similair x values on hover
7. Explore scatterplot trend interactively using
ggplotly()
and geom_smooth()
- For
pop_density
vs.newdeathsper100k
create a chart with the same variables usinggglot_ly()
- Explore the pattern between \(x\) and \(y\)
- Explain what you see. Do you think
pop_density
correlates withnewdeathsper100k
?
plt_smooth <- ggplot(
cv_states_today,
aes(x = pop_density, y = newdeathsper100k)
) +
theme_minimal() +
geom_smooth() +
geom_point(aes(colour = state, size = population)) +
scale_x_continuous(
trans = "log",
breaks = c(1, 10, 100, 1000, 10000),
labels = c(1, 10, 100, 1000, 10000)
)
ggplotly(plt_smooth)
8. Multiple line chart
- Create a line chart of the
naive_CFR
for all states over time usingplot_ly()
- Use the zoom and pan tools to inspect the
naive_CFR
for the states that had an increase in November How have they changed over time?
- Use the zoom and pan tools to inspect the
- Create one more line chart, for Florida only, which shows
new_cases
andnew_deaths
together in one plot. Hint: useadd_lines()
- Use hoverinfo to “eyeball” the approximate peak of deaths and peak of cases. What is the time delay between the peak of cases and the peak of deaths?
9. Heatmaps
Create a heatmap to visualize new_cases
for each state
on each date greater than January 1st, 2023 - Start by mapping selected
features in the dataframe into a matrix using the tidyr
package function pivot_wider()
, naming the rows and
columns, as done in the lecture notes - Use plot_ly()
to
create a heatmap out of this matrix. Which states stand out?
cv_states_mat <- cv_states |>
# filter(date >= "2023-01-01") |> # I will include from Oct, 2022
select(state, date, new_cases) |>
pivot_wider(names_from = state, values_from = new_cases) |>
column_to_rownames("date") |>
as.matrix()
plot_ly(
x = rownames(cv_states_mat),
y = colnames(cv_states_mat),
z = cv_states_mat,
type = "heatmap",
colors = "Greys",
showscale = TRUE
) |>
colorbar(title = "New cases")
- Create a second heatmap in which the pattern of
new_cases
for each state over time becomes more clear by filtering to only look at dates every two weeks.
#create heatmap
filter_dates <- seq(
as.Date("2022-10-01"),
max_date,
by = "2 weeks"
)
cv_states_mat_2 <- cv_states |>
filter(date %in% filter_dates) |>
select(state, date, new_cases) |>
# the column and row were incorrectly placed in tutorial
pivot_wider(names_from = date, values_from = new_cases) |>
column_to_rownames("state") |>
as.matrix()
plot_ly(
x = colnames(cv_states_mat_2),
y = rownames(cv_states_mat_2),
z = ~ cv_states_mat_2,
colors = "Greys",
type = "heatmap",
showscale = TRUE
) |>
colorbar(title = "New cases")
# instead of filtering, we can try averaging every 2 weeks to avoid losing information
# state names are moved to hover instead of showing on the y axis
cv_states_2_week_avg <- cv_states |>
mutate(week2 = year(date) + round(week(date) / 2, 0)) |>
group_by(state, week2) |>
summarise(
date = min(date),
new_cases = mean(new_cases),
.groups = "drop"
) |>
arrange(state, date, new_cases)
cv_states_mat_3 <- cv_states_2_week_avg |>
select(state, date, new_cases) |>
pivot_wider(names_from = date, values_from = new_cases) |>
column_to_rownames("state") |>
as.matrix()
hovertext <- cv_states_2_week_avg |>
mutate(
hovertext = paste0(state, ", ",
strftime(date, format = "%b %d, %Y"), "\n",
"2-week average new cases: ", round(new_cases, 1))) |>
select(state, date, hovertext) |>
pivot_wider(names_from = date, values_from = hovertext) |>
column_to_rownames("state") |>
as.matrix()
plot_ly(
x = colnames(cv_states_mat_3),
z = cv_states_mat_3,
colors = "Greys",
type = "heatmap",
hoverinfo = "text",
text = hovertext
) |>
colorbar(title = "New cases") |>
layout(
yaxis = list(showticklabels = FALSE, ticklen = 0, title = "States")
)
10. Map
- Create a map to visualize the
naive_CFR
by state on March 15, 2023
pick.date = "2023-03-15"
# Create the map
cv_march_15 <- cv_states |>
dplyr::filter(date == pick.date)
map_march_15 <- plot_geo(
cv_march_15,
locationmode = "USA-states"
) |>
add_trace(
z = ~ naive_cfr,
locations = ~ abb,
coloraxis = "coloraxis"
) |>
layout(
geo = list(
scope = "usa",
showlakes = TRUE,
lakecolor = toRGB("steelblue")
),
xaxis = list(title = "March 15, 2023")
) |>
colorbar(
title = "Naive CFR"
)
- Compare with a map visualizing the
naive_CFR
by state on most recent date
# Map for today's date
map_today <- plot_geo(
cv_states_today,
locationmode = "USA-states"
) |>
add_trace(
z = ~ naive_cfr,
locations = ~ abb,
coloraxis = "coloraxis"
) |>
layout(
geo = list(
scope = "usa",
showlakes = TRUE,
lakecolor = toRGB("steelblue")
),
xaxis = list(title = strftime(max_date, "%B %d, %Y"))
) |>
colorbar(
title = "Naive CFR"
)
# March 15, 2021 for comparison
pick.date = "2021-03-15"
# Create the map
map_2021 <- merge(cv_states_readin, state_pops, by = "state") |>
dplyr::filter(date == pick.date) |>
dplyr::mutate(
date = as.Date(date, format = "%Y-%m-%d"),
naive_cfr = cases / deaths
) |>
plot_geo(
locationmode = "USA-states"
) |>
add_trace(
z = ~ naive_cfr,
locations = ~ abb,
coloraxis = "coloraxis"
) |>
layout(
geo = list(
scope = "usa",
showlakes = TRUE,
lakecolor = toRGB("steelblue")
),
xaxis = list(title = "March 15, 2021", visible = TRUE)
) |>
colorbar(
title = "Naive CFR"
)
# subplots with subtitles
# see: https://plotly.com/r/subplots/
titles <- list(
list(
x = 0.5,
y = 1.0,
text = "March 15, 2021",
xref = "paper",
yref = "paper",
xanchor = "center",
yanchor = "bottom",
showarrow = FALSE
),
list(
x = 0.5,
y = .63,
text = "March 15, 2023",
xref = "paper",
yref = "paper",
xanchor = "center",
yanchor = "bottom",
showarrow = FALSE
),
list(
x = 0.5,
y = .3,
text = strftime(max_date, "%B %d, %Y"),
xref = "paper",
yref = "paper",
xanchor = "center",
yanchor = "bottom",
showarrow = FALSE
)
)
subplot(map_2021, map_march_15, map_today, nrows = 3) |>
layout(coloraxis = list(colorscale = "Viridis"),
xaxis = list(visible = TRUE),
annotations = titles)