
Data Wrangling and ML 1 (Advanced
Regression)

JSC 370: Data Science II

February 5, 2024

Today's goals
We will learn how to wrangle and manipulate large data with dtplyr - in particular,

• Selecting variables.
• Filtering data.
• Creating variables.
• Summarize data.

Throughout the session we will see examples using:

• data.table in R,
• dtplyr in R, and
• pydatatable

All with the MET dataset.

We will also take a look at advanced regression, for which you will need the mgcv() package.

https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
https://github.com/h2oai/datatable
https://github.com/h2oai/datatable
https://github.com/h2oai/datatable
https://raw.githubusercontent.com/JSC370/JSC370-2024/main/data/met_all.gz
https://raw.githubusercontent.com/JSC370/JSC370-2024/main/data/met_all.gz

Data wrangling in R

Data wrangling describes the processes designed to import, clean up, and transform raw datasets from their messy and
complex "raw" forms into high-quality data. You can use your wrangled data to produce valuable insights.

Data wrangling in R
Overall, you will find the following approaches:

• base R: Use only base R functions.

• dplyr: Using "verbs".

• data.table: High-performing (ideal for large data)

• dplyr + data.table = dtplyr: High-performing + dplyr verbs.

Other methods involve, for example, using external tools such as Spark, sparkly.

We will be focusing on data.table because of this

Take a look at this very neat cheat sheet by Erik Petrovski here.

http://spark.apache.org/
http://spark.apache.org/
https://cran.r-project.org/package=sparklyr
https://cran.r-project.org/package=sparklyr
https://h2oai.github.io/db-benchmark/
https://h2oai.github.io/db-benchmark/
https://raw.githubusercontent.com/rstudio/cheatsheets/master/datatable.pdf
https://raw.githubusercontent.com/rstudio/cheatsheets/master/datatable.pdf

Selecting variables: Load the packages

library(data.table)
library(dtplyr)
library(dplyr)
library(ggplot2)
library(mgcv)
library(lubridate)

The dtplyr R package translates dplyr (tidyverse) syntax to data.table, so that we can still use the dplyr
verbs while at the same time leveraging the performance of data.table.

The mgcv package enables advanced regression models with basis splines.

Loading the data
We will use the MET dataset, which we can download (and load) directly in our session using the following commands:

Where are we getting the data from
met_url <- "https://raw.githubusercontent.com/JSC370/JSC370-2024/main/data/met.gz"

Downloading the data to a tempfile (so it is destroyed afterwards)
you can replace this with, for example, your own data:
tmp <- tempfile(fileext = ".gz")
tmp <- "met.gz"

We sould be downloading this, ONLY IF this was not downloaded already.
otherwise is just a waste of time.
if (!file.exists(tmp)) {
 download.file(
 url = met_url,
 destfile = tmp,

method = "libcurl", timeout = 1000 (you may need this option)
)
}

Now we can load the data using the fread() function.

Reading in the data
In R, fread, do a quick wrangle to remove outliers (discovered earlier), and print head

met_dt <- fread(tmp)
met_dt <- met_dt[temp > -10][order(temp)]
head(met_dt)

In Python, import with datatable, read, and print first 5 rows

import datatable as dt
met_dt_py = dt.fread("met.gz")
met_dt_py.head(5)

Before we continue, let's learn a bit more on data.table and dtplyr

data.table and dtplyr: Data Table's Syntax
• As you have seen in previous lectures, in data.table all happens within the square brackets. Here is common way to

imagine DT:

• Any time that you see := in j that is "Assignment by reference." Using = within j only works in some specific cases.

data.table and dtplyr: Data Table's Syntax
Operations applied in j are evaluated within the data, meaning that names work as symbols, e.g.,

This returns an error (met is not referencing the data.table)
met[, elev]

This works fine
met_dt[, elev]

data.table and dtplyr: Data Table's Syntax
Furthermore, we can do things like this:

met_dt[, plot(temp, elev)]

NULL

Lazy loading, queries
• From Wikipedia "Lazy Loading" (also known as asynchronous loading) is a design pattern commonly used in

computer programming and mostly in web design and development to defer initialization of an object until the point
at which it is needed. It can contribute to efficiency in the program's operation if properly and appropriately used.

• Lazy loading means that the code for a particular function doesn’t actually get loaded into memory until the last
minute – when it’s actually being used.

• When you create a "lazy" query, you’re creating a pointer to a set of conditions on the database, but the query isn’t
actually run and the data isn’t actually loaded until you call "next" or some similar method to actually fetch the data
and load it into an object.

https://en.wikipedia.org/wiki/Lazy_loading
https://en.wikipedia.org/wiki/Lazy_loading

data.table and dtplyr: Lazy table
• The dtplyr package provides a way to translate dplyr verbs to data.table syntax.

• The key lies on the function lazy_dt from dtplyr (see ?dtplyr::lazy_dt).

• This function creates a wrapper that "points" to a data.table object

data.table and dtplyr: Lazy table (cont.)

Creating a lazy table object
met_ldt <- lazy_dt(met_dt, immutable = FALSE)

We can use the address() function from data.table
address(met_ldt)
address(met_ldt$parent)

[1] "0x7fcbff8c9788"
[1] "0x7fcbe5255c00"

data.table selecting columns
How can we select the columns USAFID, lat, and lon, using data.table where the j argument accepts the column
names:

met_dt[, list(USAFID, lat, lon, temp, elev)]
met_dt[, .(USAFID, lat, lon, temp, elev)] # Alternative 1 (. is an alias to list)
met_dt[, c("USAFID", "lat", "lon", "temp", "elev")] # Alternative 2

USAFID lat lon temp elev
1: 726764 44.683 -111.116 -3.0 2025
2: 726764 44.683 -111.116 -3.0 2025
3: 726764 44.683 -111.116 -3.0 2025
4: 726764 44.683 -111.116 -3.0 2025
5: 720411 36.422 -105.290 -2.4 2554

2317200: 690150 34.300 -116.166 52.8 696
2317201: 690150 34.296 -116.162 52.8 625
2317202: 690150 34.300 -116.166 53.9 696
2317203: 690150 34.300 -116.166 54.4 696
2317204: 720267 38.955 -121.081 56.0 467

What happens if instead of list() you used c()?

Selecting columns (cont. 1)
Using the dplyr::select verb:

met_dt |>
 select(USAFID, lat, lon, temp, elev)

USAFID lat lon temp elev
1: 726764 44.683 -111.116 -3.0 2025
2: 726764 44.683 -111.116 -3.0 2025
3: 726764 44.683 -111.116 -3.0 2025
4: 726764 44.683 -111.116 -3.0 2025
5: 720411 36.422 -105.290 -2.4 2554

2317200: 690150 34.300 -116.166 52.8 696
2317201: 690150 34.296 -116.162 52.8 625
2317202: 690150 34.300 -116.166 53.9 696
2317203: 690150 34.300 -116.166 54.4 696
2317204: 720267 38.955 -121.081 56.0 467

Selecting columns (cont. 2)
In the case of pydatatable

met_dt_py[:,["USAFID", "lat", "lon", "temp","elev"]]

What happens if instead of ["USAFID", "lat", "lon", "temp", "elev"] you used {"USAFID", "lat",
"lon", "temp", "elev"} (vector vs set).

Selecting columns (cont. 3)
For the rest of the session we will be using these variables: USAFID, WBAN, year, month, day, hour, min, lat, lon, elev,
wind.sp, temp, and atm.press.

Data.table
met_dt <- met_dt[,
 .(USAFID, WBAN, year, month, day,
 hour, min, lat, lon, elev,
 wind.sp, temp, atm.press)
]

Need to redo the lazy table
met_ldt <- lazy_dt(met_dt)

Data filtering: Logical conditions
• Based on logical operations, e.g. condition 1 [and|or condition2 [and|or ...]]

• Need to be aware of ordering and grouping of and and or operators.

• Fundamental logical operators:

x y Negate
!x

And
x & y

Or
x | y

Xor
xor(x, y)

true true false true true false
false true true false true true
true false false false true true
false false true false false false

• Fundamental relational operators, in R: <, >, <=, >=, ==, !=.

XOR operations
• The XOR logical operation, exclusive or, takes two Boolean operands and returns true if, and only if, the operands

are different. Conversely, it returns false if the two operands have the same value.

• So, for example, the XOR operator can be used when we have to check for two conditions that can't be true at the
same time.

https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Exclusive_or

How many ways can you write an XOR operator?
Write a function that takes two arguments (x,y) and applies the XOR operator element wise. Here you have a
template:

myxor <- function(x, y) {
 res <- logical(length(x))
for (i in 1:length(x)) {

 res[i] <- # do something with x[i] and y[i]
 }
return(res)

}

Or if vectorized (this would be better)

myxor <- function(x, y) {
INSERT YOUR CODE HERE

}

Hint 1: Remember that negating (x & y) equals (!x | !y).

Hint 2: Logical operators are a distributive, meaning a * (b + c) = (a * b) + (a + c), where * and + are & or
|.

In R

myxor1 <- function(x,y) {(x & !y) | (!x & y)}
myxor2 <- function(x,y) {!((!x | y) & (x | !y))}
myxor3 <- function(x,y) {(x | y) & (!x | !y)}
myxor4 <- function(x,y) {!((!x & !y) | (x & y))}
cbind(
 ifelse(xor(test[,1], test[,2]), "true", "false"),
 ifelse(myxor1(test[,1], test[,2]), "true", "false"),
 ifelse(myxor2(test[,1], test[,2]), "true", "false"),
 ifelse(myxor3(test[,1], test[,2]), "true", "false"),
 ifelse(myxor4(test[,1], test[,2]), "true", "false")
)

[,1] [,2] [,3] [,4] [,5]
[1,] "false" "false" "false" "false" "false"
[2,] "true" "true" "true" "true" "true"
[3,] "true" "true" "true" "true" "true"
[4,] "false" "false" "false" "false" "false"

Or in Python

Loading the libraries
import numpy as np
import pandas as pa

Defining the data
x = [True, True, False, False]
y = [False, True, True, False]
ans = {

'x' : x,
'y' : y,
'and' : np.logical_and(x, y),
'or' : np.logical_or(x, y),
'xor' : np.logical_xor(x, y)

 }
pa.DataFrame(ans)

Or in Python (bis)

def myxor(x,y):
return np.logical_or(

 np.logical_and(x, np.logical_not(y)),
 np.logical_and(np.logical_not(x), y)
)

ans['myxor'] = myxor(x,y)
pa.DataFrame(ans)

We will now see applications using the met dataset

Filtering (subsetting) the data
Need to select records according to some criteria. For example:

• First day of the month, and
• Above latitude 40, and
• Elevation outside the range 500 and 1,000.

The logical expressions would be

• (day == 1)
• (lat > 40)
• ((elev < 500) | (elev > 1000))

Respectively.

In R with data.table:

met_dt[(day == 1) & (lat > 40) & ((elev < 500) | (elev > 1000))] |>
 nrow()

[1] 27049

In R with dplyr::filter():

met_ldt |>
 filter(day == 1, lat > 40, (elev < 500) | (elev > 1000)) |>
 collect() |> # Notice this line!
 nrow()

[1] 27049

With lazy tables, R delays doing any work until the last possible moment: it collects together everything you want to do
and then sends it to the database in one step.

In Python

met_dt_py[(dt.f.day == 1) & (dt.f.lat > 40) & ((dt.f.elev < 500) | (dt.f.elev > 1000)), :].nrows
met_dt_py[dt.f.day == 1,:][dt.f.lat > 40,:][(dt.f.elev < 500) | (dt.f.elev > 1000),:].nrows

In the case of pydatatable we use dt.f. to refer to a column. df. is what we use to refer to datatable's namespace.

The f. is a symbol that allows accessing column names in a datatable's Frame.

https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Namespace
https://datatable.readthedocs.io/en/latest/manual/f-expressions.html
https://datatable.readthedocs.io/en/latest/manual/f-expressions.html
https://datatable.readthedocs.io/en/latest/manual/f-expressions.html
https://datatable.readthedocs.io/en/latest/manual/f-expressions.html

More wrangling questions
1. How many records have a temperature within 18 and 25 C?

2. Some records have missings. Count how many records have temp as NA?

3. Following the previous question, plot a sample of 1,000 of (lat, lon) of the stations with temp as NA and those
with data.

Solutions

Question 1
message("Question 1: ", nrow(met_dt[(temp < 25) & (temp > 18)]))

Question 1: 908047

met_dt[temp %between% c(18, 25), .N]

met_ldt |>
filter(between(temp, 18, 25)) |>
collect() |>
nrow()

Question 2
message("Question 2: ", met_dt[is.na(temp), .N])

Question 2: 60089

• Note the special symbol .N in j

• .N can be used in j, which is particularly useful to get the number of rows after subsetting

Solutions (con't)

Question 3
set.seed(123)
message("Question 3")

Drawing a sample
idx <- met_dt[, list(x = sample.int(.N, 2000, replace = FALSE)), by = is.na(temp)]$x

Visualizing the data
ggplot(map_data("state"), aes(x = long, y = lat)) +
 geom_map(aes(map_id = region), map = map_data("state"), col = "lightgrey", fill = "gray") +
 geom_jitter(
 data = met_dt[idx],
 mapping = aes(x = lon, y = lat, col = is.na(temp)),
 inherit.aes = FALSE, alpha = .5, cex = 2
)

Solutions (con't)

Creating variables: Data types
• logical: Bool true/false type, e.g. dead/alive, sick/healthy, good/bad, yes/no, etc.

• strings: string of characters (letters/symbols), e.g. names, text, etc.

• integer: Numeric variable with no decimal (discrete), e.g. age, days, counts, etc.

• double: Numeric variable with decimals (continuous), e.g. distance, expression level, time.

In C (and other languages), strings, integers, and doubles may be specified with size, e.g. in python integers can be of
9, 16, and 32 bits. This is relevant when managing large datasets, where saving space can be fundamental (more info).

https://en.wikipedia.org/wiki/C_data_types#Main_types
https://en.wikipedia.org/wiki/C_data_types#Main_types

Creating variables: Special data types
Most programming languages have special types which are built using basic types. A few examples:

• time: Could be date, date + time, or a combination of both. Usually it has a reference number defined as date 0. In
R, the Date class has as reference 1970-01-01, in other words, "days since January 1st, 1970".

• categorical: Commonly used to represent strata/levels of variables, e.g. a variable "country" could be represented
as a factor, where the data is stored as numbers but has a label.

• ordinal: Similar to factor, but it has ordering, e.g. "satisfaction level: 5 very satisfied, ..., 1 very unsatisfied".

Other special data types could be ways to represent missings (usually described as na or NA), or special numeric types,
e.g. +-Inf and Undefined (NaN).

When storing/sharing datasets, it is a good practice to do it along a dictionary describing each column data type/format.

Questions 3: What's the best way to represent the
following

• 0, 1, 1, 0, 0, 1

• Diabetes type 1, Diabetes type 2, Diabetes type 1, Diabetes type 2

• on, off, off, on, on, on

• 5, 10, 1, 15, 0, 0, 1

• 1.0, 2.0, 10.0, 6.0

• high, low, medium, medium, high

• -1, 1, -1, -1, 1,

• .2, 1.5, .8,

• , , ,

π

π exp 1 π π

Variable creation
If we wanted to create two variables, elev^2 and the scaled version of wind.sp by it's standard deviation, we could
do the following

With data.table

met_dt[, elev2 := elev^2]
met_dt[, windsp_scaled := wind.sp/sd(wind.sp, na.rm = TRUE)]

Alternatively:
met_dt[, c("elev2", "windsp_scaled") := .(elev^2, wind.sp/sd(wind.sp,na.rm=TRUE))]

Variable creation (cont. 1)
With the verb dplyr::mutate():

met_dt[, c("elev2", "windsp_scaled") := NULL] # This to delete these variables
met_ldt |>
 mutate(
 elev2 = elev ^ 2,
 windsp_scaled = wind.sp/sd(wind.sp,na.rm=TRUE)
) |>
 collect()

A tibble: 2,317,204 × 15
USAFID WBAN year month day hour min lat lon elev wind.sp temp
<int> <int> <int> <int> <int> <int> <int> <dbl> <dbl> <int> <dbl> <dbl>
1 726764 94163 2019 8 27 11 50 44.7 -111. 2025 0 -3
2 726764 94163 2019 8 27 12 10 44.7 -111. 2025 0 -3
3 726764 94163 2019 8 27 12 30 44.7 -111. 2025 0 -3
4 726764 94163 2019 8 27 12 50 44.7 -111. 2025 0 -3
5 720411 137 2019 8 18 12 35 36.4 -105. 2554 0 -2.4
6 726764 94163 2019 8 26 12 30 44.7 -111. 2025 0 -2

7 726764 94163 2019 8 26 12 50 44.7 -111. 2025 0 -2
8 726764 94163 2019 8 26 13 10 44.7 -111. 2025 0 -2
9 726764 94163 2019 8 27 10 30 44.7 -111. 2025 0 -2
10 726764 94163 2019 8 27 10 50 44.7 -111. 2025 1.5 -2

Variable creation (cont. 2)
Imagine that we needed to generate all those calculations (scale by sd) on many more variables. We could then use the
.SD symbol:

Listing the names
in_names <- c("wind.sp", "temp", "atm.press")
out_names <- paste0(in_names, "_scaled")
met_dt[,
 c(out_names) := lapply(.SD, function(x) x/sd(x, na.rm = TRUE)),
 .SDcols = in_names
]

Looking at the first 4
head(met_dt[, .SD, .SDcols = out_names], n = 4)

wind.sp_scaled temp_scaled atm.press_scaled
1: 0 -0.4955951 NA
2: 0 -0.4955951 NA
3: 0 -0.4955951 NA
4: 0 -0.4955951 NA

• Key things to notice here: c(out_names), .SD, and .SDCols.

• More on .SD

Variable creation (cont. 3)
In the case of dplyr, we could use the following

as_tibble(met_ldt) |>
 mutate(
 across(
 all_of(in_names),

function(x) x/sd(x, na.rm = TRUE),
 .names = "{col}_scaled2"
)
) |>
Just to print the last columns

 select(ends_with("_scaled2")) |>
 head(n = 4)

A tibble: 4 × 3
wind.sp_scaled2 temp_scaled2 atm.press_scaled2
<dbl> <dbl> <dbl>
1 0 -0.496 NA
2 0 -0.496 NA

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-sd-usage.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-sd-usage.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-sd-usage.html

3 0 -0.496 NA
4 0 -0.496 NA

Key thing here: This approach has no direct translation to data.table, which is why we used as_tibble().

Merging data
• While building the MET dataset, we dropped the State data.

• We can use the original Stations dataset and merge it to the MET dataset.

• But we cannot do it right away. We need to process the data somewhat first.

Merging data (cont. 1)

stations <- fread("ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-history.csv")
stations[, USAF := as.integer(USAF)]

Dealing with NAs and 999999
stations[, USAF := fifelse(USAF == 999999, NA_integer_, USAF)]
stations[, CTRY := fifelse(CTRY == "", NA_character_, CTRY)]
stations[, STATE := fifelse(STATE == "", NA_character_, STATE)]

Selecting the three relevant columns, and keeping unique records
stations <- unique(stations[, list(USAF, CTRY, STATE)])

Dropping NAs
stations <- stations[!is.na(USAF)]

head(stations, n = 4)

USAF CTRY STATE
1: 7018 <NA> <NA>
2: 7026 AF <NA>
3: 7070 AF <NA>

4: 8260 <NA> <NA>

Notice the function fifelse(). Now, let's try to merge the data!

Merging data (cont. 2)

merge(
Data

 x = met_dt,
 y = stations,
List of variables to match

 by.x = "USAFID",
 by.y = "USAF",
Which obs to keep?

 all.x = TRUE,
 all.y = FALSE
) |> nrow()

[1] 2385443

This is more rows! The original dataset, met_dt, has 2317204. This means that the stations dataset has duplicated
IDs. We can fix this:

stations[, n := 1:.N, by = .(USAF)]
stations <- stations[n == 1,][, n := NULL]

Merging data (cont. 3)
We now can use the function merge() to add the extra data

met_dt <- merge(
Data

 x = met_dt,
 y = stations,
List of variables to match

 by.x = "USAFID",
 by.y = "USAF",
Which obs to keep?

 all.x = TRUE,
 all.y = FALSE
)

head(met_dt[, list(USAFID, WBAN, STATE)], n = 4)

USAFID WBAN STATE
1: 690150 93121 CA
2: 690150 93121 CA

3: 690150 93121 CA
4: 690150 93121 CA

What happens when you change the options all.x and all.y?

Aggregating data: Adding grouped variables
• Many times we need to either impute some data, or generate variables by strata.

• If we, for example, wanted to impute missing temperature with the daily state average, we could use by together
with the data.table::fcoalesce() function:

 met_dt[, temp_imp := fcoalesce(temp, mean(temp, na.rm = TRUE)),
 by = .(STATE, year, month, day)]

• In the case of dplyr, we can do the following using dplyr::group_by together with dplyr::coalesce():

We need to create the lazy table again, since we replaced it in the merge
 met_ldt <- lazy_dt(met_dt, immutable = FALSE)

 met_ldt |>
 group_by(STATE, year, month, day) |>
 mutate(
 temp_imp2 = coalesce(temp, mean(temp, na.rm = TRUE))
) |> collect()

Aggregating data: Adding grouped variables
(cont.)
Let's see how it looks like

Preparing for ggplot2
plotdata <-met_dt[USAFID == 720172][order(year, month, day)]
plotdata <- rbind(
 plotdata[, .(temp = temp, type = "raw")],
 plotdata[USAFID == 720172][, .(temp = temp_imp, type = "filled")]
)

Generating an 'x' variable for time
plotdata[, id := 1:.N, by = type]

plotdata |>
 ggplot(aes(x = id, y = temp, col = type, lty = type)) +
 geom_line()

Aggregating data: Adding grouped variables
(cont.)

Aggregating data: Summary table
• Using by also allow us creating summaries of our data.

• For example, if we wanted to compute the average temperature, wind-speed, and atmospheric preassure by state,
we could do the following

 met_dt[, .(
 temp_avg = mean(temp, na.rm=TRUE),
 wind.sp_avg = mean(wind.sp, na.rm=TRUE),
 atm.press_avg = mean(atm.press, na.rm = TRUE)
),
 by = STATE
][order(STATE)] |> head(n = 4)

STATE temp_avg wind.sp_avg atm.press_avg
1: AL 26.19799 1.563645 1016.148
2: AR 26.20697 1.872876 1014.551
3: AZ 28.80596 2.983999 1010.771
4: CA 22.36199 2.614711 1012.637

Aggregating data: Summary table (cont. 1)
When dealing with too many variables, we can use the .SD special symbol in data.table:

Listing the names
in_names <- c("wind.sp", "temp", "atm.press")
out_names <- paste0(in_names, "_avg")

met_dt[,
 setNames(lapply(.SD, mean, na.rm = TRUE), out_names),
 .SDcols = in_names, keyby = STATE
] |> head(n = 4)

STATE wind.sp_avg temp_avg atm.press_avg
1: AL 1.563645 26.19799 1016.148
2: AR 1.872876 26.20697 1014.551
3: AZ 2.983999 28.80596 1010.771
4: CA 2.614711 22.36199 1012.637

Notice the keyby option here: "Group by STATE and order by STATE".

Aggregating data: Summary table (cont. 2)
• Using dplyr verbs

 met_ldt |>
 group_by(STATE) |>
 summarise(
 temp_avg = mean(temp, na.rm=TRUE),
 wind.sp_avg = mean(wind.sp, na.rm=TRUE),
 atm.press_avg = mean(atm.press, na.rm = TRUE)
) |> arrange(STATE) |> head(n = 4)

Source: local data table [4 x 4]
Call: head(setorder(`_DT3`[, .(temp_avg = mean(temp, na.rm = TRUE),
wind.sp_avg = mean(wind.sp, na.rm = TRUE), atm.press_avg = mean(atm.press,
na.rm = TRUE)), keyby = .(STATE)], STATE, na.last = TRUE),
n = 4)

STATE temp_avg wind.sp_avg atm.press_avg
<chr> <dbl> <dbl> <dbl>
1 AL 26.2 1.56 1016.

2 AR 26.2 1.87 1015.
3 AZ 28.8 2.98 1011.
4 CA 22.4 2.61 1013.

Other data.table goodies
• shift() Fast lead/lag for vectors and lists.

• fifelse() Fast if-else, similar to base R's ifelse().

• fcoalesce() Fast coalescing of missing values.

• %between% A short form of (x < lb) & (x > up)

• %inrange% A short form of x %in% lb:up

• %chin% Fast match of character vectors, equivalent to x %in% X, where both x and X are character vectors.

• nafill() Fill missing values using a constant, last observed value, or the next observed value.

Machine Learning 1: Advanced Regression
• Linear regression is useful, but there are so many ways in which it can fail

Machine Learning 1: Advanced Regression
• A linear model tries to fit the best straight line that passes through the data, so it doesn't work well for all datasets.

• In general, where in regular linear regression is a linear combination of variables .

• If we want to represent the regression more generally, we can define as a "smooth" function described by a
basis function consisting of 'non-linear' terms.

Y (s) = f(s) + ϵ f(s) Xβ

f(s)

Basis Function
Basics of Basis Functions

• We will start with a 1-dimensional, univariate case. For example this could be seen in time series, where we are modeling
time (x) with basis functions.

• Polynomial bases are a good way to illustrate what is going on. Consider the regression model:

and let's expand it out by a polynomial

yi = f(xi) + ϵi

yi = β0 + β1xi + β2x2
i + β3x3

i + β4x4
i + ϵi

Basis Function
Here

is a 4th order polynomial. So, is a function represented by five basis functions

that are defined by:

f(xi) = β0 + β1xi + β2x2
i + β3x3

i + β4x4
i

f(x)

f(xi) =
5

∑
j=1

xjβj =
5

∑
j=1

bj(x)βj

b1(x) = 1, b2(x) = x, b3(x) = x2, b4(x) = x3, b5(x) = x4

Basis Functions
• In general, a basis is a set of functions that can be added together in a weighted fashion to form a more

complicated function

• Here our weights are the regression coefficients

• In general, a basis function is represented by

βj

fi = ∑ bj(xi)βj

Polynomial Basis

Polynomial Basis
• The basis functions are each multiplied by and then summed to give the final curve . In the previous slide, this is

shown in the bottom left figure.
• Below, we show this concept in terms of an example of CO2 concentrations over a year (monthly data).

βj f(x)

Splines
• In general, splines are curves that are formed by combining pieces of a polynomial.

• There are several types of splines including natural, cubic, and b-splines (the b stands for basis).

• B-spline curves are made up of polynomial pieces and are defined by a set of knots.

• Choosing the number of knots defines how smooth (few) or wiggly (many) your functions.

f(ti) =
4

∑
j=1

tjβj

Splines

Splines
• Smoothing splines with penalty allows us to estimate where to put the knots by penalizing the wiggliness of the function
• Minimize the function

.
• Here, is a penalty parameter that controls how much to penalize wiggly functions (roughness penalty).
• Trade-off between the goodness of fit (the sum of squares) and the wiggliness of the function (the integral).
• Start by putting a knot at every data point, then penalize.
• It is an optimization problem m where we minimize:

• the matrix S is constructed by using the spline basis we chose, B is the basis matrix

∑
i

(yi − f(ti))2 + λ ∫ f ′′(t)2dt

λ

∑
i

(yi − BT
i β)2 + λβT Sβ

Splines
• This function

represents the loss + penalty.
• We see similar functions in lasso and ridge regression.
• The second derivative corresponds to how much the slope is changing (whereas the first derivative measures the

slope of the function at).
• The integral is a measure of the total change in the function , over its entire range. If is very smooth then

 will be close to constant and the integral will take on a small value.
• A large will will make the function smoother, but means the penalty has no effect and the function will be very

wiggly.
• As , will be perfectly smooth, a straight line that passes through the points.

∑
i

(yi − f(ti))2 + λ ∫ f ′′(t)2dt

f ′′(t)2 f ′(t)
t

∫ f ′′(t)2dt f'(t) f

f'(t)
λ f λ = 0

λ → ∞ f

1-D Splines
Types of 1-D splines include:

• cubic splines (basically piecewise cubic polynomials)
• cyclic splines (cubic splines with connected ends)
• basis splines (B-spline) with other polynomial orders
• cardinal splines (where knot placement is always a certain distance)
• wavelets (often cardinal wavelet splines)

Fitting Spline Regression Models
We will use CO$_2$ data from the Mauna Loa observatory in Hawaii: https://gml.noaa.gov/ccgg/trends/data.html

• important variables are: average (monthly CO$_2$ concentrations), year, month, and decimal.date

• we will make a month-year variable

co2 <- read.csv("co2_mm_mlo.csv", skip=40)

co2 <- co2 |>
 mutate(month_year = make_date(co2$year, co2$month)) |>
 rename(co2 = average)

co2 |>
 ggplot(aes(y=co2,x=month_year)) +
 geom_line() +
 labs(x='Date (month-year)', y='CO2 concentration ppm')+
 theme_bw()

https://gml.noaa.gov/ccgg/trends/data.html
https://gml.noaa.gov/ccgg/trends/data.html

Fitting Spline Regression Models

Fitting Spline Regression Models

library(mgcv)
Using cubic regression spline bases with 4 knots to show trends in one year
co2_2023 <- co2[co2$year==2023,]
gam_co2 <- gam(co2~s(month,bs="cr", k=4),data=co2_2023)
plot(gam_co2)

Fitting Spline Regression Models

try fitting to all data and smoothing date (overall trends) and month (to get within year trends)
gam_co2_all <- gam(co2~s(decimal.date,bs="cr",k=20)+s(month,bs="cc"),data=co2)
predict on data
pred_co2 <- predict.gam(gam_co2_all,co2)
plot(pred_co2,type='l')

2-D Splines
• Thin plate splines are smoothing splines in 2-d
• Extend the 1-d case to:

• where the penalty breaks down to the sum of the partial second derivatives
• controls the "wiggliness" as in the 1-D spline (roughness penalty)

∑
i

(zi − g(s1, s2))2 + λ ∬ g′′(s1, s2)2ds1ds2

λ

Thin Plate Splines
The idea behind a thin plate spline is:

• Basically we put a bendable plane through over the space and the points in the space pull the plane (by way of knots)
• Where there are more points grouped, we expect the plane to be pulled more significantly
• If there is a very bumpy surface, there will be more knots used and a more wiggly surface

Thin Plate Splines

Thin Plate Spline Regression
The height of where the surface is pulled is going to depend on the magnitude of what we are modeling, Y(s)

Thin Plate Spline Regression

Fitting Spline Regression Models

gam_temp <- gam(temp~s(x,y,bs="ts",k=60, fx=TRUE),data=idx)
plot(gam_temp)
summary(gam_temp)

More on Advanced Regression
For more information and examples about regression that includes basis functions, see Ch 7 of An Introduction to
Statistical Learning with applications in R

https://www.statlearning.com/
https://www.statlearning.com/
https://www.statlearning.com/
https://www.statlearning.com/

