
RReepprroodduucciibbllee RReesseeaarrcchh aanndd
VVeerrssiioonn CCoonnttrrooll

JJSSCC 337700:: DDaattaa SScciieennccee IIII

JJaannuuaarryy 1155,, 22002244

RReepplliiccaabbiilliittyy vvss RReepprroodduucciibbiilliittyy

Replicability

-- Repeating a study by independently performing another study

Reproducibility

-- Generating the exact same results when using the same data

-- If we can't reproduce a study, how can we replicate it?

RReepprroodduucciibbiilliittyy

There are several exponential growth curves happening:

-- Data production

-- Data storage and transfer

-- Computing power

-- Complexity of methods

-- Published research

RReepprroodduucciibbiilliittyy

Barriers to doing reproducible work:

-- Lack of awareness

-- Tradition or common practice

-- Tools and training

-- Time

RReepprroodduucciibbllee RReesseeaarrcchh

RReepprroodduucciibbllee RReesseeaarrcchh

In computational sciences and data analysis, what is reproducibility?

-- The data and code used to make a finding are available and they are
presented in such a way that it is (relatively) straightforward for an
independent researcher to recreate the finding.

RReepprroodduucciibbllee RReesseeaarrcchh

This actually seldom happens. Consider two interesting articles by Tim
Vines:

-- The Availability of Research Data Declines Rapidly with Article Age “of
516 articles published between 2 and 22 years ago…the odds of a data
set being extant fell by 17% per year.”

-- Recommendations for utilizing and reporting population genetic
analyses: the reproducibility of genetic clustering using the program
structure “we reanalysed data sets gathered from papers using the
software package ‘structure’… 30% of analyses were unable to
reproduce the same number of population clusters.”

RReepprroodduucciibbllee RReesseeaarrcchh

Scientific articles have fairly detailed methods sections, but those are
typically insufficient to actually reproduce an analysis. Roger Peng and
Stephanie Hicks write "Reproducibility is typically thwarted by a lack of
availability of the original data and computer code."

Scientists owe it to themselves and their community to have an explicit
record of all the steps in an analysis done at a computer.

https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-012420-105110
https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-012420-105110

RReepprroodduucciibbllee RReesseeaarrcchh DDoo''ss

-- Start with a good question, make sure it is focused and it is something
you're interested in.

-- Teach your computer to do the work from beginning to end!

-- Use version control.

-- Keep track of your software environment, from what is in your
toolchain (software: Python, R, Tableau) to version numbers.

-- Set your seed for any random number generation or sampling! This is
needed when splitting up your training and test sets.

-- Think about the entire pipeline.

RReepprroodduucciibbllee RReesseeaarrcchh DDoonntt''ss

Don't do things by hand!

-- Editing spreadsheets to clean it up

-- Removing outliers

-- QA/QC

-- Validating

-- Editing tables or figures

-- Downloading data from a website by clicking links in a web browser

-- Splitting data and moving it around

-- If anything is done by hand because there is no other way, document

RReepprroodduucciibbllee RReesseeaarrcchh DDoonntt''ss

Don't use point and click software or other interactive software if you can
avoid it.

-- This type of work is not easily reproduced because there is no trace of
the steps. If you have to use it, write down the steps!

-- Save output. Save the data and code that generated the output, rather
than the output itself.

RReepprroodduucciibbllee RReesseeaarrcchh CChhaalllleennggeess

-- Data size

-- Try to build in your code tools that help with this, for example
parallel processing

-- Can store in smaller chunks and write code that pulls data files
automatically, combining them when needed for analysis

-- Write meta data, use tools that help with data organization

RReepprroodduucciibbllee RReesseeaarrcchh CChhaalllleennggeess

Data complexity

-- Try to incorporate smaller snippets of data in your workflow to check
reproducibility

-- Training, validation sets

-- Diagnostic visualizations

Workflow complexities

-- Use readme files!!

WWhhaatt iiss vveerrssiioonn ccoonnttrrooll??

WWhhaatt iiss vveerrssiioonn ccoonnttrrooll??

[I]s the management of changes to
documents [...] Changes are usually

1

2
Trunks

WWhhyy ddoo wwee ccaarree??

Have you ever:

-- Made a change to code, realised it was a mistake and wanted to revert
back?

-- Lost code or had a backup that was too old?

-- Had to maintain multiple versions of a product?

-- Wanted to see the difference between two (or more) versions of your
code?

-- Wanted to prove that a particular change broke or fixed a piece of
code?

WWhhyy ddoo wwee ccaarree?? ((ccoonntt''dd))

-- Wanted to submit a change to someone else's code?

-- Wanted to share your code, or let other people work on your code?

-- Wanted to see how much work is being done, and where, when and
by whom?

-- Wanted to experiment with a new feature without interfering with
working code?

In these cases, and no doubt others, a version control system should make
your life easier.

-- Stackoverflow (by si618)

WWhhyy ddoo wwee ccaarree?? ((ccoonntt''dd))

https://stackoverflow.com/a/1408464/2097171
https://stackoverflow.com/a/1408464/2097171
https://stackoverflow.com/users/44540/si618
https://stackoverflow.com/users/44540/si618

GGiitt:: TThhee ssttuuppiidd ccoonntteenntt ttrraacckkeerr

Git logo and Linus Torvalds, creator of git

https://commons.wikimedia.org/wiki/File:Git-logo.svg
https://commons.wikimedia.org/wiki/File:Git-logo.svg
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Linus_Torvalds

GGiitt:: TThhee ssttuuppiidd ccoonntteenntt ttrraacckkeerr

-- During this class (and perhaps, the entire program) we will be using
Git.

-- Git is used by most developers in the world.

-- A great reference about the tool can be found here

-- More on what's stupid about git here.

https://git-scm.com/
https://git-scm.com/
https://insights.stackoverflow.com/survey/2018#work-_-version-control
https://insights.stackoverflow.com/survey/2018#work-_-version-control
https://git-scm.com/book
https://git-scm.com/book
https://en.wikipedia.org/wiki/Git#Naming
https://en.wikipedia.org/wiki/Git#Naming

HHooww ccaann II uussee GGiitt

There are several ways to include Git in your work-pipeline. A few are:

-- Through command line

-- Through one of the available Git GUIs:

-- RStudio (link)

-- Git-Cola (link)

-- Github Desktop (link)

More alternatives here.

https://jennybc.github.io/2014-05-12-ubc/ubc-r/session03_git.html
https://jennybc.github.io/2014-05-12-ubc/ubc-r/session03_git.html
https://git-cola.github.io/
https://git-cola.github.io/
https://desktop.github.com/
https://desktop.github.com/
https://git-scm.com/download/gui
https://git-scm.com/download/gui

AA CCoommmmoonn wwoorrkkflflooww

AA CCoommmmoonn wwoorrkkflflooww

1 Start the session by pulling (possible) updates: git pull

2 Make changes:

a) (optional) Add untracked (possibly new) files: `git add [target file]`

b) (optional) Stage tracked files that were modified: `git add [target file]`

c) (optional) Revert changes on a file: `git checkout [target file]`

3 Move changes to the staging area (optional): git add

AA CCoommmmoonn wwoorrkkflflooww

4 Commit:

a) If nothing pending: `git commit -m "Your comments go here."`

b) If modifications not staged: `git commit -a -m "Your comments go here."`

5 Upload the commit to the remote repo: git push .

Note: We are assuming that you already installed git in your system.

https://git-scm.com/
https://git-scm.com/

HHaannddss--oonn 00:: IInnttrroodduuccee yyoouurrsseellff

Set up your git install with git config , start by telling who you are

$ git config --global user.name "Meredith Franklin"
$ git config --global user.email "mfranklin@email.com"

If you have already set up git previously, you can check your settings

$ git config --list

(to get out of the list in terminal, press q)

Try it yourself (5 minutes) (more on how to configure git here)

https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

HHaannddss--oonn 11:: RReemmoottee rreeppoossiittoorryy

We will start by working on our very first project. To do so, you are required
to start using Git and Github so you can share your code with your team.
For this exercise, you need to:

a. Create an new (empty) repository on GitHub (you can try `JSC370`). Make sure to include a README.md (checkbox)

b. Go to the local directory where you want to store the files for this repo.

c. Clone the repository (in GitHub copy the repo link) `git clone https://github.com/...`.

d. Back in terminal, edit the README.md. You can use nano in the terminal or open in another app such as RStudio or Subl

e. Add the edited README.md file to the tree using the `git add` command, and check the status.

f. Make the first commit using the `git commit` command adding a message, e.g.

 $ git commit -m "My first commit ever!"

HHaannddss--oonn 11:: RReemmoottee rreeppoossiittoorryy

You can use git log to see the history.

You can also use git status to see the list of items that might be pending in
your git workflow.

HHaannddss--oonn 11:: RReemmoottee rreeppoossiittoorryy

The following code is fully executable (copy-pastable)

(a) Creating the folder for the project (and getting in there)
mkdir ~/JSC370
cd ~/JSC370

(b) Initializing git, creating a file, and adding the file
git init

(c) Creating the Readme file
echo An empty line > README.md

(d) Adding the file to the tree
git add README.md
git status

(e) Commiting and checkout out the history

git commit -m "My first commit ever!"
git log

HHaannddss--oonn 11:: RReemmoottee rreeppoossiittoorryy

If you add a wrong file to the tree, you can remove files from the tree using
git rm --cached , for example, imagine that you added the file class-
notes.docx (which you are not supposed to track), then you can remove it
using

$ git rm --cached class-notes.docx

This will remove the file from the tree but not from your computer. You can
go further and ask git to avoid adding docx files using the .gitignore file

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

HHaannddss--oonn 11:: RReemmoottee rreeppoossiittoorryy

HHaannddss--oonn 11:: RReemmoottee rreeppoossiittoorryy

EExxaammppllee ffoorr ..ggiittiiggnnoorree

Example exctracted directly from Pro-Git (link).

ignore all .a files
*.a

but do track lib.a, even though you're ignoring .a files above
!lib.a

only ignore the TODO file in the current directory, not subdir/TODO
/TODO

ignore all files in any directory named build
build/

ignore doc/notes.txt, but not doc/server/arch.txt
doc/*.txt

ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**/*.pdf

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

RReessoouurrcceess

-- Git's everyday commands, type man giteveryday in your terminal/
command line. and the very nice cheatsheet.

-- My personal choice for nightstand book: The Pro-git book (free online)
(link)

-- Github's website of resources (link)

-- The "Happy Git with R" book (link)

-- Roger Peng's Mastering Software Development Book Section 3.9
Version control and Github (link)

https://github.github.com/training-kit/
https://github.github.com/training-kit/
https://git-scm.com/book
https://git-scm.com/book
https://try.github.io/
https://try.github.io/
https://happygitwithr.com/
https://happygitwithr.com/
https://bookdown.org/rdpeng/RProgDA/version-control-and-github.html
https://bookdown.org/rdpeng/RProgDA/version-control-and-github.html

-- Git exercises by Wojciech Frącz and Jacek Dajda (link)

-- Checkout GitHub's Training YouTube Channel (link)

https://gitexercises.fracz.com/
https://gitexercises.fracz.com/
https://www.youtube.com/user/GitHubGuides
https://www.youtube.com/user/GitHubGuides

