Reproducible Research and
Version Control

JSC 370: Data Science |l

January 15, 2024



Replicability vs Reproducibility
Replicability

- Repeating a study by independently performing another study
Reproducibility

- Generating the exact same results when using the same data

- If we can't reproduce a study, how can we replicate it?



Reproducibility
There are several exponential growth curves happening:

- Data production

- Data storage and transfer
- Computing power

- Complexity of methods

- Published research



Reproducibility
Barriers to doing reproducible work:

- Lack of awareness
- Tradition or common practice
- Tools and training

-Time



Reproducible Research

Publication
only

Not reproducible

Publication +

Code

Reproducibility Spectrum

Code
and data

Full

Linked and o
replication

executable
code and data

Gold standard

L

[
[



Reproducible Research

In computational sciences and data analysis, what is reproducibility?

- The data and code used to make a finding are available and they are
presented in such a way that it is (relatively) straightforward for an
independent researcher to recreate the finding.



Reproducible Research

This actually seldom happens. Consider two interesting articles by Tim
Vines:

- The Availability of Research Data Declines Rapidly with Article Age “of
516 articles published between 2 and 22 years ago...the odds of a data
set being extant fell by 17% per year.”

- Recommendations for utilizing and reporting population genetic
analyses: the reproducibility of genetic clustering using the program
structure “we reanalysed data sets gathered from papers using the
software package ‘structure’... 30% of analyses were unable to
reproduce the same number of population clusters.”



Reproducible Research

Scientific articles have fairly detailed methods sections, but those are
typically insufficient to actually reproduce an analysis. Roger Peng and
Stephanie Hicks write "Reproducibility is typically thwarted by a lack of
availability of the original data and computer code."

Scientists owe it to themselves and their community to have an explicit
record of all the steps in an analysis done at a computer.


https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-012420-105110
https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-012420-105110

Reproducible Research Do's

- Start with a good question, make sure it is focused and it is something
you're interested in.

- Teach your computer to do the work from beginning to end!
- Use version control.

- Keep track of your software environment, from what is in your
toolchain (software: Python, R, Tableau) to version numbers.

- Set your seed for any random number generation or sampling! This is
needed when splitting up your training and test sets.



- Think about the entire pipeline.

Reproducible Research Dont's
Don't do things by hand!

- Editing spreadsheets to clean it up
- Removing outliers

- QA/QC
- Validating

- Editing tables or figures

- Downloading data from a website by clicking links in a web browser



- Splitting data and moving it around

_IFarmvithinA ic AAana v hanA lkhacraiica thara ic nAa AthaAarrwwimsyvy AAaciimaant

Reproducible Research Dont's

Don't use point and click software or other interactive software if you can
avoid it.

- This type of work is not easily reproduced because there is no trace of
the steps. If you have to use it, write down the steps!

- Save output. Save the data and code that generated the output, rather
than the output itself.



Reproducible Research Challenges

- Data size

- Try to build in your code tools that help with this, for example
parallel processing

- Can store in smaller chunks and write code that pulls data files
automatically, combining them when needed for analysis

- Write meta data, use tools that help with data organization



Reproducible Research Challenges

Data complexity

- Try to incorporate smaller snippets of data in your workflow to check
reproducibility

- Training, validation sets

- Diagnostic visualizations
Workflow complexities

- Use readme files!!



What is version control?

“FINAL doc

W4 €9 i

CEmaL.doc! FINAL_rev.2.doc

L [,

G N - 7
FINAL _rev.6.COMMENTS.doc FINAL _rev.8.commentsS.
CORRECTIONS. doc

JOKEE CHAM © 2012




rinaL_rev.io.commenst.  FINAL _rev.22.commenteHT.
corrections?.MORE.30.doC  corrections.10. #@$%WHYDD

WWW.PHDCOMICS.COM

What is version control?



[l]s the management of changes to
documents [..] Changes are usually

Why do we care?

Have you ever:

- Made a change to code, realised it was a mistake and wanted to revert
back?
- Lost code or had a backup that was too old?

- Had to maintain multiple versions of a product?

- Wanted to see the difference between two (or more) versions of your
code?



- Wanted to prove that a particular change broke or fixed a piece of
code?

Why do we care? (cont'd)

- Wanted to submit a change to someone else's code?
- Wanted to share your code, or let other people work on your code?

- Wanted to see how much work is being done, and where, when and
by whom?

- Wanted to experiment with a new feature without interfering with
working code?

In these cases, and no doubt others, a version control system should make
your life easier.



-- Stackoverflow (by si618)

Why do we care? (cont'd)

in the CLOUD

N

LOCAL to your
computer /]
a directory N

(= an RStudio Project)
= a Git repository

Making things easier:

RStudio makes the R coding nicer

RStudio or SourceTree or GitHub for Mac
or GitHub for Windows make using Git
easier for novices

Good to know:

full Git power comes at the command line

there are other ways to host Git repos on

4

a GitHub repository

LOCAL to’your
friend’s computer

a directory
(= an RStudio Project)



https://stackoverflow.com/a/1408464/2097171
https://stackoverflow.com/a/1408464/2097171
https://stackoverflow.com/users/44540/si618
https://stackoverflow.com/users/44540/si618

the web, such as Bitbucket or your own Git =a it repository |
server

Git: The stupid content tracker

Git logo and Linus Torvalds, creator of git

o

Ll
ksl


https://commons.wikimedia.org/wiki/File:Git-logo.svg
https://commons.wikimedia.org/wiki/File:Git-logo.svg
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Linus_Torvalds

Git: The stupid content tracker

- During this class (and perhaps, the entire program) we will be using
Git.

- Git is used by most developers in the world.
- A great reference about the tool can be found here

- More on what's stupid about git here.


https://git-scm.com/
https://git-scm.com/
https://insights.stackoverflow.com/survey/2018#work-_-version-control
https://insights.stackoverflow.com/survey/2018#work-_-version-control
https://git-scm.com/book
https://git-scm.com/book
https://en.wikipedia.org/wiki/Git#Naming
https://en.wikipedia.org/wiki/Git#Naming

How can | use Git

There are several ways to include Git in your work-pipeline. A few are:

- Through command line

- Through one of the available Git GUls:
- RStudio (link)

- Git-Cola (link)
- Github Desktop (link)

More alternatives here.


https://jennybc.github.io/2014-05-12-ubc/ubc-r/session03_git.html
https://jennybc.github.io/2014-05-12-ubc/ubc-r/session03_git.html
https://git-cola.github.io/
https://git-cola.github.io/
https://desktop.github.com/
https://desktop.github.com/
https://git-scm.com/download/gui
https://git-scm.com/download/gui

A Common workflow

To initialize the

project

git init

Pull changes
(on going work)

Modify your work:
New files, edit docs, etc.

Push the
changes

>

git pull —>»| Change
git push git add

N

git commit

Add the changes
to the tree



Commit your
changes

A Common workflow

1 Start the session by pulling (possible) updates: git pull

2 Make changes:

a) (optional) Add untracked (possibly new) files: “git add [target file]"
b) (optional) Stage tracked files that were modified: “git add [target file]"

c) (optional) Revert changes on a file: “git checkout [target file]"

3 Move changes to the staging area (optional): git add



A Common workflow

4 Commit:

a) If nothing pending: “git commit -m "Your comments go here."’

b) If modifications not staged: “git commit -a -m "Your comments go here.™"

5 Upload the commit to the remote repo: git push.

Note: We are assuming that you already installed git in your system.

|
e
I,
|
|


https://git-scm.com/
https://git-scm.com/

Hands-on O: Introduce yourself

Set up your git install with git config, start by telling who you are

$ git config --global user.name "Meredith Franklin"
$ git config --global user.email "mfranklin@email.com"

If you have already set up git previously, you can check your settings
$ git config --list

(to get out of the list in terminal, press q)

Try it yourself (5 minutes) (more on how to configure git here)


https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

Hands-on 1. Remote repository

We will start by working on our very first project. To do so, you are required
to start using Git and Github so you can share your code with your team.
For this exercise, you need to:

a.

Create an new (empty) repository on GitHub (you can try “JSC370°). Make sure to include a README.md
Go to the local directory where you want to store the files for this repo.
Clone the repository (in GitHub copy the repo 1link) “git clone https://github.com/...".

Back in terminal, edit the README.md. You can use nano in the terminal or open in another app such ¢

. Add the edited README.md file to the tree using the “git add™ command, and check the status.

. Make the first commit using the "git commit® command adding a message, e.g.



$ git commit -m "My first commit ever!"

Hands-on 1. Remote repository

You can use git log to see the history.

You can also use git status to see the list of items that might be pending in
your git workflow.



Hands-on 1. Remote repository

The following code is fully executable (copy-pastable)

# (a) Creating the folder for the project (and getting in there)
mkdir ~/31SC370
cd ~/31SC370

# (b) Initializing git, creating a file, and adding the file
git init

# (c) Creating the Readme file
echo An empty line > README.md

# (d) Adding the file to the tree
git add README.md
git status

# (e) Commiting and checkout out the history



git commit -m "My first commit ever!"
git log

Hands-on 1. Remote repository

If you add a wrong file to the tree, you can remove files from the tree using
git rm --cached, for example, imagine that you added the file class-
notes.docx (Which you are not supposed to track), then you can remove it

using
$ git rm --cached class-notes.docx

This will remove the file from the tree but not from your computer. You can
go further and ask git to avoid adding docx files using the .gitignore file


https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

Hands-on 1. Remote repository

O meredithfranklin

Overview [ Repositories 10 [ Projects ) Packages Stars 2

Type ~ Language ~ Sort ~ (=R

Meredith Franklin
meredithfranklin

Associate Professor, University of
Toronto Department of Statistical
Sciences & School of the Environment

Edit profile
28 followers - 6 f

University of Toronto
) Toronto
meredith.franklin@usc.edu
meredithfrankiin.github.io
¥ @dr_mfrankiin

Achievements




Hands-on 1. Remote repository

O Search or jump to... Pull requests Issues Marketplace ~Explore

Create a new repository
A repository contains all project fi

Import a repository.

Repository template

Start your repository with a

No template ~

Owner Repository name
® meredithfrankiin - [
Great repository names are short and memorable. Need inspiration? How about friendly-fortnight?

Description (optional)

° Public

Initialize this repository with:
Skip this step if importing an existing rep

W Add a README file
T

scription for your proje

W Add gitignore

Choose which files not to track from a list of templates. Learn more.

W Choose a license
Alicense tels others what they can and can't do with your code




Example for .gitignore

Example exctracted directly from Pro-Git (link).

# ignore all .a files
*.a

# but do track lib.a, even though you're ignoring .a files above
1lib.a

# only ignore the TODO file in the current directory, not subdir/TODO
/TODO

# ignore all files in any directory named build
build/

# ignore doc/notes.txt, but not doc/server/arch.txt
doc/*.txt

# ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**x/*.pdf


https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

Resources

- Git's everyday commands, type man giteveryday in your terminal/
command line. and the very nice cheatsheet.

- My personal choice for nightstand book: The Pro-git book (free online)
(link)

- Github's website of resources (link)
- The "Happy Git with R" book (link)

- Roger Peng's Mastering Software Development Book Section 3.9
Version control and Github (link)


https://github.github.com/training-kit/
https://github.github.com/training-kit/
https://git-scm.com/book
https://git-scm.com/book
https://try.github.io/
https://try.github.io/
https://happygitwithr.com/
https://happygitwithr.com/
https://bookdown.org/rdpeng/RProgDA/version-control-and-github.html
https://bookdown.org/rdpeng/RProgDA/version-control-and-github.html

- Git exercises by Wojciech Fracz and Jacek Dajda (link)

_Chacl/an+ CitHd i Re TraininA VAiiTiilha Channal (HinlA


https://gitexercises.fracz.com/
https://gitexercises.fracz.com/
https://www.youtube.com/user/GitHubGuides
https://www.youtube.com/user/GitHubGuides

