Lab 01 - Hello R!

Learning goals

Terminology

We’ve already thrown around a few new terms, so let’s define them before we proceed.

I like to think of R as the engine of the car, and RStudio is the dashboard.

Starting slow

As the labs progress, you are encouraged to explore beyond what the labs dictate; a willingness to experiment will make you a much better programmer. Before we get to that stage, however, you need to build some basic fluency in R. Today we begin with the fundamental building blocks of R and RStudio: the interface, reading in data, and basic commands.

And to make versioning simpler, this is a solo lab. Additionally, we want to make sure everyone gets a significant amount of time at the steering wheel.

Getting started

1. Download project

Go the the the lab page for this week on the website. You can download the lab materials from the course github.

2 Download R

If you don’t have R installed.

Go to the CRAN and download R, make sure you get the version that matches your operating system.

If you have R installed

If you have R installed run the following code

R.version
##                _                           
## platform       aarch64-apple-darwin20      
## arch           aarch64                     
## os             darwin20                    
## system         aarch64, darwin20           
## status                                     
## major          4                           
## minor          2.2                         
## year           2022                        
## month          10                          
## day            31                          
## svn rev        83211                       
## language       R                           
## version.string R version 4.2.2 (2022-10-31)
## nickname       Innocent and Trusting

This should tell you what version of R you are currently using. If your R version is lower than 4.0.0 I would strongly recommend updating. In general it is a good idea to update your R version, unless you have a project right now that depend on a specific version of R.

2.2 Download RStudio

We recommend using RStudio as your IDE if you don’t already have it installed. You can go to the RStudio website to download and install the software.

2.3 Launch RStudio

You have 2 ways to open the lab project we will be working with. Inside the folder is a lab01.Rproj file, opening this file should launch your RStudio project.

You can also open the RStudio application first and then open the project by going file -> open project...

3. Get working!

Open the R Markdown (Rmd) file called lab01-hello-R.Rmd. It will likely ask you if you would like to install a package that is required, click Install.

Hello RStudio!

RStudio is comprised of four panes.

Packages

R is an open-source language, and developers contribute functionality to R via packages. In this lab we will work with three packages: datasauRus which contains the dataset, and tidyverse which is a collection of packages for doing data analysis in a “tidy” way.

Load these packages by running the following in the Console.

library(tidyverse) 
library(datasauRus)

If you haven’t installed these packages yet and R complains, then you can install these packages by running the following command. (Note that R package names are case-sensitive)

install.packages(c("tidyverse", "datasauRus"))

Note that the packages are also loaded with the same commands in your R Markdown document.

Warm up

Before we introduce the data, let’s warm up with some simple exercises.

The top portion of your R Markdown file (between the three dashed lines) is called YAML. It stands for “YAML Ain’t Markup Language”. It is a human friendly data serialization standard for all programming languages. All you need to know is that this area is called the YAML (we will refer to it as such) and that it contains meta information about your document.

YAML

Open the R Markdown (Rmd) file in your project, change the author name to your name, and knit the document.

Data

The data frame we will be working with today is called datasaurus_dozen and it’s in the datasauRus package. Actually, this single data frame contains 12 datasets, designed to show us why data visualisation is important and how summary statistics alone can be misleading. The different datasets are maked by the dataset variable.

To find out more about the dataset, type the following in your Console: ?datasaurus_dozen. A question mark before the name of an object will always bring up its help file. This command must be ran in the Console.

  1. Based on the help file, how many rows and how many columns does the datasaurus_dozen file have? What are the variables included in the data frame? Add your responses to your lab report.

Let’s take a look at what these datasets are. To do so we can make a frequency table of the dataset variable:

datasaurus_dozen %>%
  count(dataset)
## # A tibble: 13 × 2
##    dataset        n
##    <chr>      <int>
##  1 away         142
##  2 bullseye     142
##  3 circle       142
##  4 dino         142
##  5 dots         142
##  6 h_lines      142
##  7 high_lines   142
##  8 slant_down   142
##  9 slant_up     142
## 10 star         142
## 11 v_lines      142
## 12 wide_lines   142
## 13 x_shape      142

The original Datasaurus (dino) was created by Alberto Cairo in this great blog post. The other Dozen were generated using simulated annealing and the process is described in the paper Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing by Justin Matejka and George Fitzmaurice. In the paper, the authors simulate a variety of datasets that the same summary statistics to the Datasaurus but have very different distributions.

Data visualization and summary

  1. Plot y vs. x for the dino dataset. Then, calculate the correlation coefficient between x and y for this dataset.

Below is the code you will need to complete this exercise. Basically, the answer is already given, but you need to include relevant bits in your Rmd document and successfully knit it and view the results.

Start with the datasaurus_dozen and pipe it into the filter function to filter for observations where dataset == "dino". Store the resulting filtered data frame as a new data frame called dino_data.

dino_data <- datasaurus_dozen %>%
  filter(dataset == "dino")

There is a lot going on here, so let’s slow down and unpack it a bit.

First, the pipe operator: %>%, takes what comes before it and sends it as the first argument to what comes after it. So here, we’re saying filter the datasaurus_dozen data frame for observations where dataset == "dino".

Second, the assignment operator: <-, assigns the name dino_data to the filtered data frame.

Next, we need to visualize these data. We will use the ggplot function for this. Its first argument is the data you’re visualizing. Next we define the aesthetic mappings. In other words, the columns of the data that get mapped to certain aesthetic features of the plot, e.g. the x axis will represent the variable called x and the y axis will represent the variable called y. Then, we add another layer to this plot where we define which geometric shapes we want to use to represent each observation in the data. In this case we want these to be points,m hence geom_point.

ggplot(data = dino_data, mapping = aes(x = x, y = y)) +
  geom_point()

If this seems like a lot, it is. And you will learn about the philosophy of building data visualizations in layer in detail in the upcoming class. For now, follow along with the code that is provided.

For the second part of this exercises, we need to calculate a summary statistic: the correlation coefficient. Correlation coefficient, often referred to as \(r\) in statistics, measures the linear association between two variables. You will see that some of the pairs of variables we plot do not have a linear relationship between them. This is exactly why we want to visualize first: visualize to assess the form of the relationship, and calculate \(r\) only if relevant. In this case, calculating a correlation coefficient really doesn’t make sense since the relationship between x and y is definitely not linear – it’s dinosaurial!

But, for illustrative purposes, let’s calculate correlation coefficient between x and y.

Start with dino_data and calculate a summary statistic that we will call r as the correlation between x and y.

dino_data %>%
  summarize(r = cor(x, y))
  1. Plot y vs. x for the star dataset. You can (and should) reuse code we introduced above, just replace the dataset name with the desired dataset. Then, calculate the correlation coefficient between x and y for this dataset. How does this value compare to the r of dino?

  2. Plot y vs. x for the circle dataset. You can (and should) reuse code we introduced above, just replace the dataset name with the desired dataset. Then, calculate the correlation coefficient between x and y for this dataset. How does this value compare to the r of dino?

Facet by the dataset variable, placing the plots in a 3 column grid, and don’t add a legend.

  1. Finally, let’s plot all datasets at once. In order to do this we will make use of facetting.
ggplot(datasaurus_dozen, aes(x = x, y = y, color = dataset))+
  geom_point()+
  facet_wrap(~ dataset, ncol = 3) +
  theme(legend.position = "none")

And we can use the group_by function to generate all correlation coefficients.

datasaurus_dozen %>%
  group_by(dataset) %>%
  summarize(r = cor(x, y))

You’re done with the data analysis exercises, but we’d like you to do two more things:

Click on the gear icon in on top of the R Markdown document, and select “Output Options…” in the dropdown menu. In the pop up dialogue box go to the Figures tab and change the height and width of the figures, and hit OK when done. Then, knit your document and see how you like the new sizes. Change and knit again and again until you’re happy with the figure sizes. Note that these values get saved in the YAML.

You can also use different figure sizes for different figures. To do so click on the gear icon within the chunk where you want to make a change. Changing the figure sizes added new options to these chunks: fig.width and fig.height. You can change them by defining different values directly in your R Markdown document as well.

Once again click on the gear icon in on top of the R Markdown document, and select “Output Options…” in the dropdown menu. In the General tab of the pop up dialogue box try out different syntax highlighting and theme options. Hit OK and knit your document to see how it looks. Play around with these until you’re happy with the look.

Optional

If you have time you can explore the different ways you can add styling to your rmarkdown document.

Here is a cheatsheet

and a markdown cheatsheet


This set of lab exercises have been adopted from Mine Çetinkaya-Rundel’s class Introduction to Data Science.